Mercury Sources, Transport, and Fate in the Atmosphere

Leonard Levin EPRI Palo Alto, California

February 21, 2003

Valuing Externalities Workshop U.S. Department of Energy February 21, 2003 McLean, VA

Potential Toxics Exposure in Humans (major mercury pathways in red)

Chemical forms of Mercury

- Inorganic mercury
 - Elemental: Hg(0), the silvery liquid metal
 - Divalent: Hg(II), often combined with chlorine
- Organic mercury
 - Monomethylmercury: MeHg, usually with chlorine; may be formed in aquatic systems
 - Dimethylmercury: highly toxic; reactive; occurrences: landfills; marine mammals?
 - Other forms

Mercury Field Study Sites (2000-2003)

Mercury Balance to the Global Atmosphere

Global atmospheric lifetime (Hg⁰): 1-1.5 yr

New Evidence on Global Lifetime

SWEDEN: A "natural" mercury experiment

- 20 years monitoring of mercury deposition
- Deposition from atmosphere: 50% drop in early 90s: due to changes in Eastern Europe
- Fish mercury: about 20% average drop
- Complication: similar drop in SO₄-2: may have led to lower methylation rates

Trends in Mercury Deposition - 2 Northern Wisconsin Bogs

DOEExternals2003.8

MERCURY TRENDS OVER TIME

Little Rock Lake, WI (reference basin)

Of the total mercury emitted into the atmosphere from a single source ...

... 20% deposits nearby

Deposition

into fish

... & 80% disperses into the global atmosphere

Dispersion

But in some fish, the mercury builds up to higher levels

Human

methylated, some going

Some mercury concentrations

```
Mercury (mostly methylmercury) in fish
1000 in a billion = 1 ppm
                                  (Dellinger et al.)
(part per million)

    Elemental mercury, from fillings, in saliva (Liang & Brooks)

    Mercury in coal (Chu & Porcella)

100 in a

    Mercury in soil (Gustin et al.)

    Methylmercury in hair, controlled dose experiment (Gearhart et al.)

10 in a billion – Methylmercury in blood (Wheatley & Paradis)
1 in a billion = 1 tennis ball in the Rose Bowl
100 in a trillion = 1 tennis ball in 10 Rose Bowls
- 10 in a trillion – Mercury in air over mine tailings (Gustin et al.)
1 in a trillion Mercury in sea or lake water (Fitzgerald et al.) (Driscoll et al.)
(1/1000th of
               Mercury in coastal atmosphere (Iverfeldt et al.)
a billion)
= 1 ng/liter
```

Mercury in Power Plant Stacks

If a 1-foot diameter pipe extending 238,000 miles from the earth to the moon were filled with the stack exhaust from a single power plant, the mercury in that pipe would equal a section 18 inches long. (thanks to Tom Brown of DOE)

Fate of Power Plant Mercury in the Environment

- from METAALICUS and Aircraft Measurements

Mercury source hierarchy

Mercuriferous belts of North America

Nevada STorMs Project Site

Contributions to Global Anthropogenic Emissions of Mercury, by Continent (tons per year)

Mercury Source Apportionment, North America

Where Does U.S. Mercury Originate? Global Contributions to U.S. Hg Deposition

Where Does U.S. Mercury originate? New York State study

EPRI TEAM Model - Case study: Adirondacks region, New York

How much do other parts of the world contribute to U.S. mercury deposition?

Mercury Wet Deposition Network, 1998 Stations

Performance Evaluation, EPRI TEAM Model (Coarse Grid) vs. Observation, Mercury Wet Deposition

How much does utility mercury contribute to the mercury that comes down in the U.S.?

EPA REMSAD model: contributors to mercury at MDN stations

Direct measurements in power plant plumes

Total Deposition of Total Mercury, Coarse Grid (µg/m²-yr)

Total Deposition of Total Mercury, Fine Grid (µg/m²-yr)

Modeling the Consequences of Mercury Emissions Controls

	Total Coal Plant Mercury EMISSIONS, tons/yr	% Difference in mercury EMISSIONS from Base Case	Total Mercury DEPOSITION in the U.S. [wet + dry, Hg(tot)], tons/yr, ALL MERCURY SOURCES	% Difference in all U.S. mercury DEPOSITION from Base Case
CURRENT CONDITIONS (Base Case)	45.6		179	
Scenario 1 (No subcategorization) MOST SEVERE CONTROLS	24.3	- 47%	173	-3.4%
Scenario 2 (Subcategorization by coal rank: bituminous vs. subbituminous vs. lignite)	31.7	- 30%	174	- 2.7%

Deposition patterns under the 2 scenarios (both coarse grid)

Percent difference in annual mercury deposition from base case

(= current emissions) and given scenario (scenario deposition is always less than base case deposition)

Some remaining issues

- We need a mass balance:
 - many uncertainties in global balance of mercury, esp. natural sources;
- How quickly will mercury deposition drop? Mercury in fish? Mercury in humans?
 - even industrial sources unclear (Peterson source near Moscow)
- What is the most efficient strategy for managing mercury risk?
- Is there a management "floor"? Does so much U.S. mercury originate outside the U.S. that U.S. controls make little difference in many areas?

